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1. Introduction
This supplementary material presents: (1) details

of three datasets; (2) the detail description of train-
ing/inference strategies and network architecture for 3D
Sketch Hallucination Module proposed in our approach; (3)
additional ablation studies and analysis of our approach;
(4) comparison with state-of-the-art methods on SUNCG
dataset; (5) visualization of SSC results of the proposed
method and SSCNet [6] on NYUCAD dataset.

2. Dataset Details
NYU consists of 1449 indoor scenes that are captured

via a Kinect sensor, which makes it a challenging dataset.
There are 795 for training and 654 for test. We follow [6]
and use the 3D annotated labels provided by [4] for seman-
tic scene completion task. To address the misalignment of
some label volumes and their corresponding depth maps,
NYUCAD uses the depth maps generated from the projec-
tions of the 3D annotations. SUNCG is a synthetic dataset
that consists of 45622 indoor scenes. The depth images and
semantic scene volumes are acquired by setting different
camera orientations. The training set contains about 150K
depth images and the corresponding test set consists of to-
tally 470 pairs sampled from 170 non-overlap scenes.

3. Implementation Details
In this section, more details of the 3D Sketch Hallucina-

tion Module proposed in our approach are provided. The
architecture is shown in Figure 1.
Training. During training, Ĝraw and Ggt are concatenated
and fed into several convolutions. It will output the mean
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Figure 1. Details of 3D Sketch Hallucination Module in the
main paper. The convolution parameters are shown as (kernel
size, dilation). The pooling parameters are shown as (downsample
rate). The Deconvolution parameters are shown as (kernel size,
upsample rate).

and diagonal covariance for the posterior q(ẑ|Ggt, Ĝraw)
and the output size is 1

4 of the input size. Then we use the
reparameterization trick to construct a latent code which ap-
proximates a gaussian distribution. The dimension of the
latent code is 16 and the resolution of it is (15× 9× 15), so
it is light-weight. Note that the blocks marked with dotted
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#Index #Stage Structure Prior CVAE SC-IoU(%) SSC-mIoU(%)
(a) 1 7 7 65.9 37.9
(b) 2 7 7 67.4 38.8
(c) 2 3 7 70.7 40.1
(d) 2 3 3 71.3 41.1

Table 1. Ablation studies on different modules. We perform this
ablation study on NYU dataset.

lines are used to downsample the input Ĝraw, so it has the
same resolution with the latent code. Then the latent code
and the downsampled Ĝraw will be concatenated and fed
into deconvolutions to obtain D(ẑ, Ĝraw)). As mentioned
in the main paper, we also train a GSNN. We sample four
latent codes with the same size of the one mentioned be-
fore from p(z) ∼ N (0, I), and conduct the same operation
as before to obtain D(z, Ĝraw)). The four results will be
averaged.
Inference. During inference, we directly sample four latent
codes from p(z) ∼ N (0, I), and concatenate the latent code
with the downsampled Ĝraw to obtain D(z, Ĝraw)). The
four results will be averaged.

4. More Quantitative Results
Besides the results analyzed in the main paper, we

demonstrate and discuss more ablation studies of our model
on more experimental settings in this section.
Different Modules in the Framework. In the main pa-
per, we show the effectiveness of different modules in the
framework on NYUCAD dataset. Here, we conduct the
same ablation study on NYU dataset. Figure 2 shows the
detailed network architectures of corresponding methods
in Table 1. As can be seen from Table 1, under the low-
resolution input, simple multi-modality strategy (Index (b))
has little strength compared with habitual SSC framework
(Index (a)). In contrast, the proposed 3D sketch-aware fea-
ture embedding strategy (Index (c)) helps boosts the per-
formances with 4.8% SC-IoU and 2.2% SSC-mIoU im-
provements. Since it explicitly encodes sketch information
of the scene, which is resolution-insensitive and compact.
Such a depth feature embedding could encourage the sub-
sequent network to infer the invisible areas of the scene with
well structure-preserving details. The further improvements
provided by Index (d) demonstrate the effectiveness of the
3D sketch hallucination module, which could help generate
more accurate and realistic results.
Different Representations of Structure Prior. To assess
the effectiveness of the 3D sketch as a structure prior to the
subsequent SSC network, we compare it with other avail-
able priors to guide the feature embedding of depth infor-
mation on NYU dataset. The results are shown in Table 2.
As mentioned in the main paper, ‘Shape’ refers to the bi-
nary description of the scene, and ‘Semantic Labels’ refers
to the semantic description of the scene. They could be re-

Input Shape Semantic Labels Sketch SC-IoU(%) SSC-mIoU(%)
TSDF+RGB 3 69.4 40.2
TSDF+RGB 3 71.5 40.3
TSDF+RGB 3 71.3 41.1

Table 2. Ablation studies on different representations of struc-
ture prior. We perform this ablation study on NYU dataset.

garded as the coarse predictions of scene completion and
scene segmentation. Then the features embedded from the
supervision of the ‘Shape’ and ‘Semantic Labels’ are fed
into the subsequent SSC network to infer the final results.
We observe that the proposed 3D sketch achieves the best
overall performance considering SC-IoU and SSC-mIoU
together. This ablation study provides additional evidence
that the proposed 3D sketch is an effective representation of
depth information and better facilitates the subsequent net-
work learning the concept of objects’ structure when com-
pared with other possible structure priors.
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Figure 2. The illustration of different methods mentioned in
Table 1. (a)(b)(c)(d) correspond to four rows of the Table.

Different Modal Inputs. We further conduct ablation stud-
ies on the effect of different modal input to our framework
on NYUCAD dataset. Results are listed in Table 3. The
experimental phenomenon is consistent with the same ex-
perimental setting on NYU dataset listed in the main pa-
per. Specifically, as shown in the third row, our frame-
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Input for Stage1 Input for Stage2 SC-IoU(%) SSC-mIoU(%)
RGB RGB 81.5 51.9
RGB TSDF 82.5 52.5
TSDF TSDF 83.7 51.3
TSDF RGB 84.2 55.2

Table 3. Ablation studies on different modal input. We perform
this ablation study on NYUCAD dataset.

work could achieve 83.7% SC-IoU and 51.3% SSC-mIoU
with only depth modality as input. Comparing with CCP-
Net [9] mentioned in the main paper, which is the most
state-of-the-art SSC method that increases the voxel reso-
lution of depth source to 240× 144× 240, our model with
single depth modality produces better results on SC-IoU (
83.7% vs 82.4%) and competitive performance on SSC-IoU
( 51.3% vs 53.2%). Note that the input and output of our
model are both under 60 × 36 × 60 resolution. With RGB
modality injected into the second stage (the fourth row),
our model could achieve leading state-of-the-art results with
84.2% SC-IoU and 55.2% SSC-mIoU. The overall results
listed in Table 3 show: (1) RGB modality has more strength
on semantic segmentation, while depth modality has more
strength on completion. (2) the proposed 3D sketch-aware
feature embedding is not conflicted with the modality input
of subsequent SSC network.
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Figure 3. Illustration of different types of embedding strategies
mentioned in Table 4. (a)Implicit embedding with no supervi-
sion. (b) Implicit embedding with supervision on structure repre-
sentations. (c) Explicit embedding with supervision on structure
representations.

Supervision Embedding SC-IoU(%) SSC-mIoU(%)
None Implicit 67.4 38.8

Shape Implicit 69.4 39.2
Explicit 69.4 40.2

Semantic Implicit 71.0 39.7
Explicit 71.5 40.3

Sketch Implicit 70.6 40.6
Explicit 71.3 41.1

Table 4. Ablation studies on different types of embeddings. We
perform this ablation study on NYU dataset.

Different Types of Embedding Strategies. At last, we
verify the effect of different types of embedding strategies
based on different structure priors on NYU dataset. In or-
der to explain explicit and implicit depth embedding more
clearly, we also illustrate the corresponding architectures in
Figure 3. Figure 3(a) represents implicit depth embedding
with no supervision. The feature comes from the TSDF
branch is directly fed into the RGB branch. Figure 3(b) rep-
resents implicit depth embedding with supervision. Figure
3(c) represents the proposed method. We abstract TSDF
feature into a concrete shape representation and use it as
structure prior to the RGB branch. Experimental results in
Table 4 show great advantage of the proposed 3D sketch-
aware feature embedding strategy as an explicit and com-
pact encoding of depth information. Note that the proposed
3D Sketch Hallucination Module (i.e., CVAE part) is incor-
porated in both models (b) and (c). Both models (b) and
(c) could obtain significant gains based on the already very
strong baseline model (a). This further illustrates the effec-
tiveness of the proposed method in another aspect.
What is the 3D sketch beneficial for? We try to find
out what benefits does the network actually get from the
3D sketch-aware feature embedding and its hallucination
schema. As mentioned in the main paper, the hallucinated
3D sketch is expected to provide structure prior to the entire
scene, including both visible and invisible areas. To verify
this, we conduct experiments to explore how much does the
network benefit from the 3D sketch on visible and invisi-
ble areas, respectively. Results are listed in Table 5. We
observe there is a relatively uniform increase in both visi-
ble (5.9%) and invisible (6.5%) areas, which illustrates the
sketch not only provides structure prior in the visible areas
but also infers reasonable structures in the invisible areas.

We also conduct experiments to explore the effect of
the sketch prior in invisible areas on the theoretical upper
limit of the proposed method. Results are listed in Table 6.
Firstly, we observe that simply supply 3D sketch prior in
visible areas could boost the performance (compared with
the first row in Table 6 in the main paper). Besides, provid-
ing 3D sketch prior in both visible and invisible areas could
significantly improve performance. We owe it to the fact
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Sketch Visible SSC-mIoU(%) Invisible SSC-mIoU(%) SSC-mIoU(%)
7 58.5 46.0 48.7
3 64.4 (5.9↑) 52.5 (6.5↑) 55.2 (6.5↑)

Table 5. Benefits of the sketch in visible/invisible areas. The
ablation study is evaluated on NYUCAD dataset.

Oracle Sketch SC-IoU(%) SSC-mIoU(%)
Visible 80.6 51.2

Visible+Invisible 94.2 65.0

Table 6. Impact of visible/invisible oracle sketch. We perform
this ablation study on NYUCAD dataset.

Region Prec. (%) Recall (%) IoU (%)
Visible 78.0 78.7 64.4

Invisible 72.1 64.6 51.7
Visible+Invisible 73.5 67.6 54.4

Table 7. Results of the sketch in visible/invisible areas. We per-
form this ablation study on NYUCAD dataset.

Method Speed(FPS) Memory(M) SSC-mIoU(%)
SSCNet [6] 0.7 5305 24.7
DDRNet [2] 1.5 1829 30.4

Ours 6.7 1753 41.1

Table 8. The inference speed and GPU memory usage of our
method and previous methods. All results are acquired on a
GTX 1080 Ti GPU and evaluated on the NYU [5] test set.

that the complete sketch provides the complete structural
information of the object in the scene, which is beneficial
for the network to learn the shape and semantics of the ob-
ject and recognize it.

We further use quantitative indicators to measure the
quality of the learned 3D sketch. Results are listed in Table
7. We observe that the learned 3D sketch has high accuracy
and recall in both visible and invisible areas, so as to supply
sufficient structure prior for the subsequent SSC network in
the proposed method.
Efficiency Analysis. Following DDRNet [2], we report the
speed and GPU memory usage of the proposed method as
well as the some previous methods. As shown in Table
8, the proposed method achieves much faster speed and a
significant performance gain compared with DDRNet [2].
Moreover, our method requires less GPU memory cost than
previous methods, which demonstrates the efficiency ad-
vantages of the proposed method.

5. Comparisons with State-of-the-art Methods
on SUNCG

To verify the generalization of our proposed method, we
further compare our method with state-of-the-art methods
on SUNCG dataset. Results are listed in Table 9. Note
that not all scenes in SUNCG have corresponding RGB

images, thus we only use TSDF volume as the input for
both two stages. Results show that our method with low-
resolution input obtains significant improvements on both
the SC-IoU and SSC-mIoU metrics when comparing with
previous state-of-the-art methods, which illustrates the ef-
fectiveness of the proposed modules.

Methods Resolution SC-IoU(%) SSC-mIoU(%)
SSCNet [6] (240, 60) 73.5 46.4
ForkNet [7] (80, 80) 86.9 63.4
SATNet [3] (60, 60) 78.5 64.3
VVNetR-120 [1] (120, 60) 84.0 66.7
CCPNet [9] (240, 60) 86.5 69.1
ESSCNet [8] (240, 60) 84.5 70.5
Ours (60, 60) 88.2 76.5

Table 9. Results on SUNCG dataset. Bold numbers represent the
best scores. Resolution(a, b) means the input resolution is (a ×
0.6a× a) and the output resolution is (b× 0.6b× b).

6. Visualization of SSC Results on NYUCAD

In this section, we show the qualitative results of the pro-
posed method and SSCNet [6]. Figure 4 visualizes the SSC
result of the proposed method and SSCNet [6] on NYU-
CAD dataset. Our method achieves better intra-class con-
sistency and inter-class distinction compared with SSCNet.
In the first and the second rows of Figure 4, SSCNet fails to
complete the wall because the wall has too many regions
missing. In contrast, the proposed method leverages the
structure prior well and successfully infer invisible areas.
In the following four rows, we observe that our results have
consistent semantic surface and precise boundaries under
the constraint of the predicted sketch, which demonstrates
the effectiveness of the structure prior.

We also show more quantitative evaluations of the ef-
fectiveness of our approach in the form of video. For a
straightforward visual perception, please refer to the sup-
plemental video and better turn the audio on. Specifically,
the first scene is a classroom. In the second column, which
is the prediction result from SSCNet, the ceiling is missing,
and the region of cabinets and chairs are in chaos. However,
our proposed method completes the ceiling well and shows
great consistency on the floor. The second scene is a class-
room with several desks. Our proposed method shows good
intra-class consistency on the board on the wall, and it com-
pletes the ceiling well. From the above two examples, we
find that the proposed method could handle a case in which
large portions of geometry are missing in the partial obser-
vation (such as the ceiling). The third scene is the living
room. We observe that in the second column, a large area
of the wall is missing and the prediction of pillows on the
sofa is not precise. However, our proposed method not only
completes the wall well, but also accurately recognizes the

4
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Figure 4. Semantic Scene Completion results on NYUCAD dataset. From left to right: (1) RGB input, (2) observed surface, (3) ground
truth, (4) results of SSCNet, (5) our results. Our results achieve higher voxel-level accuracy compared with SSCNet. Better viewed in color
and zoom in.

objects on the wall. The last scene is another living room.
Our proposed method accurately recognizes the chairs and
achieves nice intra-class consistency and inter-class distinc-
tion.
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